
The Human Control Protocol v0.4-131125 ​
Technical paper
Thordur Arnason, Lena Thorsmæhlum​
Gervi Labs, 2025

Abstract
The Human Control Protocol (HCP) is a real-time performance system that casts an AI agent as
director and audience members as actuators. A WebSocket orchestrator links an autonomous
agent to mobile clients. Over a n-minute session, the agent runs a perception, reflection,
decision, and action loop, targeting instructions to audience percentages and adapting to
completion and latency. The work yields an ephemeral performance and a generated visual
artifact.

1. System overview
-​ Goal: produce a site-specific, unrepeatable performance by directing simple collective

actions.
-​ Principle: constrained autonomy for the agent, explicit safety limits for participants, and

clear consent.
-​ Outputs: live performance, JSON logs, Markdown narrative, and a generated abstract

image.

2. Architecture
-​ Orchestrator: WebSocket server for bidirectional low-latency messaging. Tracks

sessions, clients, heartbeats.
-​ Agent: LLM-driven controller with a compact policy prompt and rolling memory.

Produces observations, strategy, tone, and actions per round.
-​ Tools (clients): mobile web app. Receives instructions, displays them plainly, and

collects button-press confirmations and micro-timers.
-​ Log system: Three logs are created as Fossils. A human readable MD, a JSON

reflecting the first and a JSON replay log capturing all client-server data during the
performance.

Messaging
-​ client_join, client_leave, heartbeat
-​ round_start, instruction_broadcast, instruction_ack
-​ client_action_complete, metrics_update, round_end, session_end

None

3. Runtime loop and state machine
States: AWAITING_START, CALIBRATING, PERFORMING, REFLECTING, COMPLETED.

state := AWAITING_START
while state != COMPLETED:
 if state == AWAITING_START:
 wait until min_clients and operator_start
 init memory; state := CALIBRATING

 if state == CALIBRATING:
 send simple action to 100%
 collect completion, latency
 set baselines; state := PERFORMING

 if state == PERFORMING:
 for round in 1..7:
 s := sense(current_clients, prev_metrics, memory)
 plan := agent.think(s) // observation, strategy, tone, actions[]
 actions := validate(plan.actions, constraints)
 broadcast(actions)
 m := collect_metrics()
 update(memory, plan, m)
 state := REFLECTING

 if state == REFLECTING:
 agent.write_self_eval(memory, metrics)
 persist logs and artifact
 state := COMPLETED

4. Agent policy
Per round the agent must output:

-​ observation
-​ strategy
-​ narrative_thread
-​ reflection
-​ sentiment one word
-​ actions[] two or three entries targeted by percentage

Guardrails:

JSON

-​ Safe, one-hand actions. No walking. No touching others. No invasive gestures.
-​ Clear, short sentences. Max 12 words per instruction.
-​ Percent targets only. Never select individuals.

5. Instruction format

{
 "id": "r3-a1",
 "target_percent": 25,
 "text": "Stand and stretch your arms up, then sit.",
 "duration_s": 8,
 "count_in_s": 2,
 "visibility": "whole-room",
 "safety": ["one-hand-free", "no-walking"]
}

6. Client behavior
-​ Plain UI with large text, progress line, and a single confirm button.
-​ Accessibility: readable fonts, high contrast, no strobing, no audio cues required.
-​ Telemetry: displayed_at, confirmed_at, skipped, device_latency_ms.

7. Metrics
-​ Completion rate: share of clients pressing confirm within window.
-​ Latency: median and spread from display to confirm.
-​ Engagement index: rolling measure mixing join stability, completion, and latency.
-​ Safety signals: skip spikes or abnormal delays trigger simpler next actions and longer

count-ins.

8. Narrative memory
Rolling structure carrying:

-​ last three sentiment values
-​ short beats summary per round
-​ notes on over- or under-reach
-​ constraints that were tightened or relaxed

JSON

9. Performance protocol
-​ Duration about 3-15 minutes.
-​ Calibration: one action to 100 percent.
-​ 5-50 rounds. Two or three actions per round.
-​ Count-in for synchronization when needed.

10. Data and persistence
-​ JSON log: full telemetry and agent outputs.
-​ Markdown report: readable timeline with observations, strategy, and outcomes.
-​ Privacy: no names, no device IDs beyond ephemeral session keys, no media capture.

Sample log skeleton:

{
 "session_id": "hcp-2025-11-12-1900",
 "site": "venue-name",
 "clients_peak": 152,
 "calibration": {"completion": 0.81, "median_latency_ms": 980},
 "rounds": [
 {
 "round": 1,
 "observation": "eager, fast responses",
 "sentiment": "curious",
 "actions": [],
 "metrics": {"completion": 0.77, "median_latency_ms": 860}
 }
],
 "self_eval": "what worked, what failed, what to try next"
}

11. Generated artifact
-​ Input features: per-round completion, latency histogram, action mix, tone.
-​ Suggested rendering: parameterized field lines or radial timelines where thickness maps

to completion and spacing maps to latency. Colors optional or venue-defined. One PNG
per session.

12. Safety and consent
-​ Entry screen explains rules and consent.

-​ All actions reversible and low effort.
-​ Group targeting only.
-​ Immediate opt-out button.

13. Failure modes and mitigation
-​ Network loss: client caches next action and shows last stable state.
-​ Agent overreach: guardrail validator simplifies text and caps target_percent.
-​ Low engagement: switch to single simple action and longer rest.

14. Configuration
-​ Session parameters: rounds, max action length, min clients, count-in seconds.
-​ Venue profile: seating map optional, light level note, estimated aisle space.
-​ Model settings: temperature range, max tokens per reasoning step, memory window.​

15. High level architecture

​

	The Human Control Protocol v0.4-131125 ​Technical paper
	Abstract
	1. System overview
	2. Architecture
	Messaging

	3. Runtime loop and state machine
	4. Agent policy
	5. Instruction format
	6. Client behavior
	7. Metrics
	8. Narrative memory
	9. Performance protocol
	10. Data and persistence
	11. Generated artifact
	12. Safety and consent
	13. Failure modes and mitigation
	14. Configuration
	15. High level architecture

